Производство  ->  Электроника и электротехника  | Автор: Башкирева Ольга | Добавлено: 2015-03-20

Что такое полупроводники

Физические свойства твердых тел, и в первую очередь их электрические свойства, определяются не тем, как образовались зоны, а тем, как они заполнены. С этой точки зрения все кристаллические тела можно разделить на две различные группы. Все тела, входящие в первую группу, являются проводниками. Вторая группа твердых тел объединяет полупроводники и диэлектрики. Во вторую группу объединяются тела, у которых над целиком заполненными зонами располагаются совершенно пустые зоны. В эту группу входят и кристаллы, имеющие структуру алмаза: кремний, германий, серое олово, собственно алмаз; и многие химические соединения- окислы металлов, карбиды, нитриды металлов, корунд.

Полупроводники делятся на собственные (чистые) и примесные (легированные). Собственными называются полупроводники высокой степени очистки. В этом случае свойства всего кристалла определяются только свойствами собственных атомов полупроводникового элемента. Появление проводящих свойств в полупроводнике может быть обусловлено повышением температуры, другими внешними воздействиями (облучение светом, бомбардировка быстрых электронов). Важно лишь, чтобы внешнее воздействие вызывало переход электронов из валентной зоны в зону проводимости или чтобы были созданы условия для генерации свободных носителей заряда в объеме полупроводника. Собственная проводимость со строгим равенством концентраций носителей различных знаков может быть реализована только в сверхчистых идеальных кристаллах полупроводника. В реальных условиях мы всегда имеем дело с кристаллами, в той или иной степени загрязненными различными примесями. Более того, именно примесные полупроводники и представляют наибольший интерес в полупроводниковой технике. Примесные полупроводники, в зависимости от типа вводимой примеси, делятся на донорные (электронные) и акцепторные (дырочные). Образование дырок в валентной зоне означает появление в кристалле дырочной проводимости. Благодаря такому типу проводимости и сами полупроводники получили название дырочных полупроводников или полупроводников p-типа. Примеси, вводимые в полупроводник для захвата электронов из валентной зоны, получили название акцепторов, из-за чего энергетические уровни этих примесей называются акцепторными уровнями, а сами полупроводники с такими примесями- акцепторными полупроводниками.

Фотопроводимость- неравновесный процесс в полупроводниках, который заключается в появлении или изменении проводящих свойств полупроводника под действием какого-либо излучения (инфракрасного, видимого или ультрафиолетового). Как правило, облучение полупроводника светом сопровождается увеличением его электропроводности. Увеличение проводимости объясняется ростом концентрации свободных носителей (подвижность неравновесных носителей практически не отличается от подвижности равновесных). Образование избыточных подвижных носителей при воздействии света возможно по следующим трем основным причинам:

  • кванты света, взаимодействуя с электронами, находящимися на примесных донорных уровнях, и отдавая им свою энергию, переводят их в зону проводимости, увеличивая тем самым концентрацию электронов проводимости;
  • кванты света возбуждают электроны, находящиеся в валентной зоне, и переводят их на акцепторные уровни, создавая тем самым свободные дырки в валентной зоне и увеличивая дырочную проводимость полупроводника;
  • кванты света переводят электроны из валентной зоны непосредственно в зону проводимости, создавая тем самым одновременно и подвижные дырки, и свободные электроны.

В настоящее время полупроводниковые приборы используются практически во всех областях электроники и радиотехнике. Однако, несмотря на чрезвычайное разнообразие этих приборов, в основе их, как правило, лежит работа обычного p-n-перехода или системы из нескольких p-n-переходов. Полупроводниковый диод содержит лишь один p-n-переход, к каждой из областей которого подведены с помощью омических контактов металлические вводы. Полупроводниковые диоды применяются в основном для выпрямления переменного тока.

В отличие от полупроводниковых диодов транзисторы представляют собой полупроводниковые системы, состоящие уже из трех областей, разделенных между собой двумя p-n-переходами. Каждая из областей имеет свой вывод. Поэтому по аналогии с вакуумными триодами транзисторы часто называют полупроводниковыми триодами. И по назначению транзисторы аналогичны вакуумным триодам: основная область их использования -усиление электрических сигналов по напряжению и по мощности. Для получения транзисторов в полупроводниковую монокристаллическую пластинку с определенным типом проводимости на двух ее противоположных гранях осуществляет вплавление или диффузионное проникновение примеси, сообщающей приповерхностным областям проводимость противоположного типа. Можно создать транзистор как p-n-p-типа, так и n-p-n-типа. Принципиальной разницы между ними нет. Просто главную роль в транзисторах p-n-p-типа играют дырки, а в транзисторах n-p-n-типа –электроны.

Полупроводники стремительно ворвались в науку и технику. Колоссальная экономия в энергопотреблении, удивительная компактность аппаратуры за счет необычайно большой плотности упаковки элементов в схемах, высокая надежность позволили полупроводникам завоевать ведущее положение в электронике, радиотехнике и науке. Исследования в космосе, где так критичны требования к размерам, весу и энергозатратам, в настоящее время немыслимы без полупроводниковых устройств, которые, кстати и энергию-то в автономном полете аппарата получают от солнечных батарей, работающих на полупроводниковых элементах. Удивительные перспективы в развитии полупроводниковой техники открыла микроэлектроника. Однако возможности полупроводников еще далеко не исчерпаны, и они ждут своих новых исследователей.

Применение полупроводников

В настоящее время полупроводниковые приборы используются практически во всех областях электроники и радиотехники. Однако, несмотря на чрезвычайное разнообразие этих приборов, в основе их, как правило, лежит работа обычного p-n-перехода или системы из нескольких p-n-переходов.

Полупроводниковый диод содержит лишь один p-n-переход, к каждой из областей которого подведены с помощью омических контактов металлические вводы.

Выпрямительные диоды. Полупроводниковые диоды применяются в основном для выпрямления переменного тока. Простейшая схема использования полупроводникового диода в качестве выпрямляющего элемента показана на рисунке 1. Источник переменного напряжения и-, диод Д и нагрузочный резистор Rn соединяются последовательно. Пропускное направление диода обозначено стрелкой (от анода к катоду).

Пусть напряжение на зажимах источника изменяется по синусоидальному закону (рис.2,а). Во время положительного полупериода, когда на анод диода подан «+», а на катод « — », диод оказывается включенным в прямом направлении и через него проходит ток. При этом мгновенное значение силы тока I определяется мгновенным значением напряжения и на зажимах источника и сопротивлением нагрузки (сопротивление диода в пропускном направлении мало, и им можно пренебречь). Во время отрицательного полупериода ток через диод практически не течет. Таким образом, в цепи протекает пульсирующий ток, график которого приведен на рисунке 2, б. Таким же пульсирующим будет и напряжение ип на нагрузочном резисторе. Так как u=iR, то изменение напряжения u повторяет ход изменения тока i. Полярность напряжения, создаваемого на сопротивлении нагрузки, всегда одна и та же, и определяется она в соответствии с направлением пропускаемого тока: на конце сопротивления, обращенного к катоду, бу дет « + », а на противоположном конце «— ».

Рассмотренная схема выпрямления является однополупериодной. Для уменьшения пульсаций выпрямленного напряжения используют сглаживающие фильтры. Наиболее простой метод сглаживания состоит в подключении параллельно нагрузочному резистору конденсатора С (на рисунке 1 он показан пунктиром). Во время положительного полупериода часть тока, пропускаемого диодом, идет на заряжение конденсатора. Во время же отрицательного полупериода, когда диод заперт, конденсатор разряжается через Rп создавая в нем ток в прежнем направлении. Благодаря этому пульсации напряжения на нагрузочном резисторе оказываются в значительной мере сглаженными.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)