Справки  ->  Энциклопедии  | Автор: Никита Сидоренко | Добавлено: 2014-11-10

Какими бывают искусственные источники света

Существует несколько видов энергии:

  • электрическая энергия;
  • световая энергия;
  • тепловая энергия;
  • энергия химических связей, которая находится в пище и в топливе каждый этот вид энергии был когда-то солнечной энергией!

Таким образом, самая главная -основная энергия для жизни на земле -это солнечная энергия.

Искусственные источники света

Современный технический прогресс шагнул очень далеко. Человечество смогло создать искусственную энергию света и тепла, которая прочно вошла в жизнь человека и без которой человечество уже не может существовать. На сегодняшний день в современном мире существует изобилие различных искусственных источников света и тепла.

Искусственные источники света — технические устройства различной конструкции и различными способами преобразования энергии, основным предназначением которых является получение светового излучения . В источниках света используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света.

Самым первым из используемых людьми в своей деятельности источником света был огонь костра. С течением времени и ростом опыта сжигания различных горючих материалов люди обнаружили, что большее количество света может быть получено при сжигании каких либо смолистых пород дерева, природных смол и масел и воска. С точки зрения химических свойств подобные материалы содержат больший процент углерода по массе и при сгорании сажистые частицы углерода сильно раскаляются в пламени и излучают свет. В дальнейшем при развитии технологий обработки металлов, развития способов быстрого зажигания с помощью огнива позволили создать и в значительной степени усовершенствовать первые независимые источники света, которые можно было устанавливать в любом пространственном положении, переносить и перезаряжать горючим. А также определенный прогресс в переработке нефти, восков, жиров и масел и некоторых природных смол позволил выделять необходимые топливные фракции: очищенный воск, парафин, стеарин, пальмитин, керосин и т. п. Такими источниками стали, прежде всего свечи, факелы, масляные, а позже нефтяные лампы и фонари. С точки зрения автономности и удобства, источники света, использующие энергию горения топлив, очень удобны, но с точки зрения пожаробезопасности , выделений продуктов неполного сгорания представляют известную опасность как источник возгорания, и история знает великое множество примеров возникновения больших пожаров, причиной которых были масляные лампы и фонари, свечи и пр.

Газовые фонари

Дальнейший прогресс и развитие знаний в области химии, физики и материаловедения, позволили людям использовать также и различные горючие газы, отдающие при сгорании большее количество света. Особым удобством газового освещения было то, что появилась возможность освещения больших площадей в городах, зданий и др., за счёт того, что газы очень удобно и быстро можно было доставить из центрального хранилища с помощью прорезиненных рукавов , либо стальных или медных трубопроводов, а также легко отсекать поток газа от горелки простым поворотом запорного крана.

Важнейшим газом для организации городского газового освещения стал так называемый «Светильный газ», производимый с помощью пиролиза жира морских животных , а несколько позже производимый в больших количествах из каменного угля при коксовании последнего на газосветильных заводах. Одним из важнейших компонентов светильного газа, который давал наибольшее количество света, был бензол, открытый в светильном газе М. Фарадеем. Другим газом, который нашел значительное применение в газосветильной промышленности, был ацетилен, но ввиду его значительной склонности к возгоранию при относительно низких температурах и большим концентрационным пределам воспламенения, он не нашел широкого применения в уличном освещении и применялся в шахтерских и велосипедных «карбидных» фонарях. Другой причиной, затруднившей применение ацетилена в области газового освещения, была его исключительная дороговизна в сравнении с светильным газом. Параллельно с развитием применения самых разнообразных топлив в химических источниках света, совершенствовалась их конструкция и наиболее выгодный способ сжигания , а также конструкция и материалы для усиления отдачи света и питания . На смену недолговечным фитилям из растительных материалов стали применять пропитку растительных фитилей борной кислотой , и волокна асбеста, а с открытием минерала монацита обнаружили его замечательное свойство при накаливании очень ярко светиться и способствовать полноте сгорания светильного газа. В целях повышения безопасности использования рабочее пламя стали ограждать металлическими сетками и стеклянными колпаками.

Появление электрических источников света

Дальнейший прогресс в области изобретения и конструирования источников света в значительной степени был связан с открытием электричества и изобретением источников тока. На этом этапе научно-технического прогресса стало совершенно очевидно, что необходимо для увеличения яркости источников света увеличить температуру области, излучающей свет. Если в случае применения реакций горения разнообразных топлив на воздухе температура продуктов сгорания достигает 1500—2300°С, то при использовании электричества температура может быть еще значительно увеличена. При нагревании электрическим током различных токопроводящих материалов с высокой температурой плавления они излучают видимый свет и могут служить в качестве источников света той или иной интенсивности. Такими материалами были предложены: графит , платина, вольфрам, молибден, рений и их сплавы. Для увеличения долговечности электрических источников света их рабочие тела стали размещать в специальных стеклянных баллонах , вакуумированных или заполненных инертными либо неактивными газами . При выборе рабочего материала конструкторы ламп руководствовались максимальной рабочей температурой нагреваемой спирали, и основное предпочтение было отдано углероду и в дальнейшем вольфраму. Вольфрам и его сплавы с рением и по настоящее время являются наиболее широкоприменяемыми материалами для изготовления электрических ламп накаливания, так как в наилучших условиях они способны быть нагреты до температур в 2800-3200°С. Параллельно с работой над лампами накаливания, в эпоху открытия и использования электричества также были начаты и значительно развиты работы по электродуговым источником света и по источникам света на основе тлеющего разряда.

Электродуговые источники света позволили реализовать возможность получения колоссальных по мощности потоков света, а источники света на основе тлеющего разряда — необычайно высокую экономичность. В настоящее время наиболее совершенные источники света на основе электрической дуги — криптоновые, ксеноновые и ртутные лампы, а на основе тлеющего разряда в инертных газах с парами ртути и другие.

Типы источников света

Для получения света могут быть использованы различные формы энергии, и в этой связи мы бы хоти выделить основные виды источников света.

  • Электрические: Электрический нагрев тел каления или плазмы.Джоулево тепло, вихревые токи, потоки электронов или ионов;
  • Ядерные: распад изотопов или деление ядер;
  • Химические:горение топлив и нагрев продуктов сгорания или тел каления;
  • Термолюминесцентные: преобразование тепла в свет в полупроводниках.
  • Триболюминесцентные: преобразования механических воздействий в свет.
  • Биолюминесцентные: бактериальные источники света в живой природе.

Опасные факторы источников света

Источники света той или иной конструкции очень часто сопровождаются наличием опасных факторов, главными из которых являются:

  • Открытое пламя;
  • Яркое световое излучение опасное для органов зрения и открытых участков кожи;
  • Тепловое излучение и наличие раскаленных рабочих поверхностей могущих привести к ожогу;
  • Высокоинтенсивное световое излучение могущее привести к возгоранию, ожогу, и ранению -излучение лазеров, дуговых ламп и др;
  • Горючие газы или жидкости;
  • Высокое напряжение питания;
  • Радиоактивность.

Самые яркие представители искусственных источников света

Факел

Факел — вид светильника, способный обеспечить продолжительный интенсивный свет на открытом воздухе при всякой погоде.

Простейшая форма факела — пучок бересты или лучин из смолистых пород деревьев, связка соломы и т. п. Дальнейшим усовершенствованием является применение различных сортов смолы, воска и т. п. горючих веществ. Иногда эти вещества служат простой обмазкой для факельного остова .

В начале XX века входят в употребление факелы электрические, с аккумуляторами. В крестьянском быту можно было встретить ещё и самые первобытные формы факелов. Факелы во все времена употреблялись для целей как утилитарных, так и для религиозных. Ими пользовались при лучении рыбы, при ночных переходах через густой лес, при исследовании пещер, для иллюминаций — словом, в тех случаях, когда неудобно употребление фонарей.

Современные факелы используются для придания романтики во время различных церемоний. Как правило, они изготовлены из бамбука и имеют в качестве источника огня картридж с жидким минеральным маслом. Обычно изготовляются в Китае, но бывают и исключения. Известные европейские дизайнеры также занимаются производством факелов.

Масляная лампа

Масляная лампа — светильник, работающий на основе сгорания масла. Принцип действия схож с принципом действия керосиновой лампы: в некую ёмкость заливается масло, туда опускается фитиль — верёвка, состоящая из растительных или искусственных волокон, по которым, согласно свойству капиллярного эффекта масло поднимается наверх. Второй конец фитиля, закреплённый над маслом, поджигается, и масло, поднимаясь по фитилю, горит.

Масляная лампа применялась издревле. В древние времена масляные лампы вылепляли из глины, или изготовляли из меди. В арабской сказке «Аладдин» из сборника «Тысяча и одна ночь» в медной лампе живет Джин.

Керосиновая лампа

Керосиновая лампа — светильник на основе сгорания керосина — продукта перегонки нефти. Принцип действия лампы примерно такой же, что и у масляной лампы: в ёмкость заливается керосин, опускается фитиль. Другой конец фитиля зажат поднимающим механизмом в горелке, сконструированной таким образом, чтобы воздух подтекал снизу. В отличие от масляной лампы, у керосиновой фитиль плетёный. Сверху горелки устанавливается ламповое стекло — для обеспечения тяги, а также для защиты пламени от ветра.

После широкого внедрения электрического освещения по плану ГОЭЛРО керосиновые лампы используются в основном в российской глубинке, где часто отключают электричество, а так же дачниками и туристами.

Лампа накаливания

Лампа накаливания — электрический источник света, светящимся телом которого служит так называемое тело накала . В качестве материала для изготовления ТН в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. В конце XIX -первой половине XX в. ТН изготавливалось из более доступного и простого в обработке материала – углеродного волокна. .

Принцип действия. В лампе накаливания используется эффект нагревания проводника при протекании через него электрического тока . Температура вольфрамовой нити накала резко возрастает после включения тока. Нить излучает электромагнитное тепловое излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн . Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 5770 K . Чем меньше температура, тем меньше доля видимого света и тем более красным кажется излучение.

Часть потребляемой электрической энергии лампа накаливания преобразует в излучение, часть уходит в результате процессов теплопроводности и конвекции. Только малая доля излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Для повышения КПД лампы и получения максимально «белого» света необходимо повышать температуру нити накала, которая в свою очередь ограничена свойствами материала нити — температурой плавления. Идеальная температура в 5770 К недостижима, т. к. при такой температуре любой известный материал плавится, разрушается и перестаёт проводить электрический ток.

В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине ТН помещено в колбу, из которой в процессе изготовления ЛН откачиваются атмосферные газы. Наиболее опасными для ЛН являются кислород и водяные пары, в атмосфере которых происходит быстрое окисление ТН. Первые ЛН изготавливали вакуумными; в настоящее время только лампы малой мощности изготавливают в вакуумированной колбе. Колбы более мощных ЛН наполняют газом . Повышенное давление в колбе газополных ламп резко уменьшает скорость разрушения ТН из-за распыления. Колбы газополных ЛН не так быстро покрываются тёмным налётом распылённого материала ТН, а температуру последнего можно увеличить по сравнению с вакуумными ЛН. Последнее позволяет повысить КПД и несколько изменить спектр излучения.

КПД и долговечность. Почти вся подаваемая в лампу энергия превращается в излучение теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K КПД составляет 5%.

С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95%.

Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.

Преимущественная часть износа нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода плавные пускатели. Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт, а 100-ваттная — более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной. .

Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности. Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.

Преимущества и недостатки ламп накаливания.

Преимущества

  • малая стоимость;
  • небольшие размеры;
  • ненужность пускорегулирующей аппаратуры;
  • при включении они зажигаются почти мгновенно;
  • отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации;
  • возможность работы как на постоянном , так и на переменном токе;
  • возможность изготовления ламп на самое разное напряжение ;
  • отсутствие мерцания и гудения при работе на переменном токе;
  • непрерывный спектр излучения;
  • устойчивость к электромагнитному импульсу;
  • возможность использования регуляторов яркости;
  • нормальная работа при низких температурах окружающей среды.

Недостатки

  • низкая световая отдача;
  • относительно малый срок службы;
  • резкая зависимость световой отдачи и срока службы от напряжения;
  • цветовая температура лежит только в пределах 2300 – 2900 к, что придает свету желтоватый оттенок;
  • лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт — 145 °C, 75 Вт — 250 °C, 100 Вт — 290 °C, 200 Вт — 330 °C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.

Утилизация

Отслужившие лампы накаливания не содержат вредных для окружающей среды веществ и могут утилизироваться как обычные бытовые отходы. Единственным ограничением является запрет на их переработку вместе с изделиями из стекла.

Светодиодное освещение

Светодиодное освещение — одно из перспективных направлений технологий искусственного освещения, основанное на использовании светодиодов в качестве источника света. Использование светодиодных ламп в освещении уже занимает 6 % рынка . Развитие светодиодного освещения непосредственно связано с технологической эволюцией светодиода. Разработаны так называемые сверхъяркие светодиоды, специально предназначенные для искусственного освещения.

Преимущества

В сравнении с обычными лампами накаливания светодиоды обладают многими преимуществами:

  • экономично используют электроэнергию по сравнению с традиционными лампами накаливания. Так, светодиодные системы уличного освещения с резонансным источником питания могут дать 132 люменов на ватт, против 150 люменов на ватт у натриевых газоразрядных ламп. Или против 15 люменов на ватт у обычной лампы накаливания и против 80-100 люменов на ватт у ртутных люминесцентных ламп;
  • срок службы в 30 раз больше по сравнению с ЛН;
  • возможность получать различные спектральные характеристики, без потери в световых фильтрах;
  • безопасность использования;
  • малые размеры;
  • отсутствие ртутных паров ;
  • отсутствие ультрафиолетового излучения и малое инфракрасное излучение;
  • незначительное тепловыделение;
  • среди производителей именно светодиодные источники света считаются наиболее функционально-перспективным направлением как с точки зрения энергоэффективности, так и затратности и практического применения.

Недостатки

  • высокая цена. Отношение цена/люмен у сверхярких светодиодов в 50 -100 раз больше, чем у обычной лампы накаливания;
  • напряжение строго нормировано для каждого вида ламп, светодиоду необходим номинальный рабочий ток. Из-за этого появляются дополнительные электронные узлы, называемые источниками тока. Это обстоятельство влияет на себестоимость системы освещения в целом. В самом простом случае, когда ток невелик, возможно, подключение светодиода к источнику постоянного напряжения, но с использование резистора;
  • при питании пульсирующим током промышленной частоты мерцают сильнее, чем люминесцентная лампа, которая в свою очередь мерцает сильнее, чем лампа накаливания;
  • могут излучать кратковременные помехи и электрические шумы , что обнаруживается при экспериментальном сравнении с лампами других типов осциллографом.

Применение

Благодаря эффективному расходу электроэнергии и простоте конструкции применяется в ручных осветительных приборах – фонариках.

Так же применяется в светотехнике для создания дизайнерского освещения в специальных современных дизайн-проектах. Надёжность светодиодных источников света позволяет использовать их в труднодоступных для частой замены местах .

Компактная люминесцентная лампа

Компактная люминесцентная лампа — люминесцентная лампа, имеющая меньшие размеры по сравнению с колбчатой лампой и меньшую чувствительность к механическим повреждениям. Зачастую встречаются предназначенными для установки в стандартный патрон для ламп накаливания . Часто компактные люминесцентные лампы называют энергосберегающими лампами, что не совсем точно, поскольку существуют энергосберегающие лампы на других физических принципах, например светодиодные.

Маркировка и цветовая температура

Трехциферный код на упаковке лампы содержит как правило информацию относительно качества света .

Первая цифра – индекс цветопередачи в 1×10 Ra .

Вторая и третья цифры – указывают на цветовую температуру лампы.

Таким образом, маркировка «827» указывает на индекс цветопередачи в 80 Ra, и цветовую температуру в 2700 к . .

По сравнению с лампами накаливания, имеют большой срок службы. Однако зависимость срока службы от колебаний напряжения в электросети приводит к тому, что в России он может равняться или даже быть меньше срока службы ламп накаливания. Частично это преодолевается применением стабилизаторов напряжения и сетевых фильтров. Основными причинами, снижающими срок службы лампы, являются нестабильность напряжения в сети, частое включение-выключение лампы.

Новые разработки позволили использовать энергосберегающую лампу совместно с устройствами снижения/увеличения освещения . Для диммирования люминесцентных ламп ни один из разработанных ранее диммеров не подходит — в этом случае следует использовать специальные электронные пускорегулирующие аппараты с возможностью управления.

Благодаря применению электронного балласта имеют улучшенные характеристики по сравнению с традиционными люминесцентными лампами — более быстрое включение, отсутствие мерцания и жужжания. Также существуют лампы с системой плавного запуска. Система плавного запуска планомерно увеличивает интенсивность света при включении в течение 1—2 секунд: это продлевает срок службы лампы, но все же не позволяет избежать эффекта «временной световой слепоты».

В то же время компактные люминесцентные лампы по ряду параметров проигрывают светодиодным лампам.

Достоинства

  • высокая светоотдача , при равной мощности световой поток КЛЛ в 4-6 раз выше, чем у ЛН, что дает экономию электроэнергию 75-85%;
  • длительный срок эксплуатации ;
  • возможность создания ламп с различными значениями цветовой температуры;
  • нагрев корпуса и колбы значительно ниже, чем у лампы накаливания.

Недостатки

  • спектр излучения: непрерывный 60-ватной лампы накаливания и линейный 11 ватной компактной люминесцентной лампы , линейчатый спектр излучения может вызвать искажения в цветопередаче;
  • несмотря на то, что использование КЛЛ действительно вносит свою лепту в сбережение электроэнергии, опыт массового применения в быту выявил целый ряд проблем, главная из которых -короткий срок эксплуатации в реальных условиях бытового применения;
  • использование широко распространенных выключателей с подсветкой приводит к периодическому, раз в несколько секунд, кратковременному зажиганию ламп, что приводит к скорому выходу из строя лампы. Об этом недостатке, за редким исключением, производители обычно не сообщают в инструкциях по эксплуатации. Для ликвидации этого эффекта необходимо параллельно светильнику включить в цепь питания конденсатор ёмкостью 0,33-0,68 мкФ на напряжение не ниже 400В;
  • спектр такой лампы линейный. Это приводит не только к неправильной цветопередаче, но и к повышенной усталости глаз. ;
  • утилизация: КЛЛ содержат 3-5 мг ртути, ядовитое вещество 1-го класса опасности . Разрушенная или повреждённая колба лампы высвобождает пары ртути, что может вызвать отравление ртутью. Зачастую на проблему утилизации люминесцентных ламп в России индивидуальные потребители не обращают внимания, а производители стремятся отстранится от проблемы.

С 1 января 2011 года, в соответствии с проектом ФЗ «Об энергосбережении» в России будет введён полный запрет на оборот ламп накаливания мощностью выше 100 Вт. .

КЛЛ со спиралевидной колбой имеет неравномерное нанесение люминофора. Он наносится так, что его слой на стороне трубки, обращённой к цоколю, толще, чем на стороне трубки, направленной на освещаемую область . Этим достигается направленность излучения. .

В некоторых моделях ламп применяется радиоактивный криптон – 85 .

КЛЛ считается тупиковой ветвью развития источников света. На сегодняшний день большинство стран Европы склоняются к мнению использования светодиодных источников света.

В связи с частыми случаями выхода из строя КЛЛ задолго до истечения обещанных производителями сроков, потребители стали призывать ввести специальные условия гарантии для продукции КЛЛ, соизмеримые с заявляемыми производителями в целях маркетинга.

В связи с «негативными» высказываниями в адрес энергосберегающих ламп, мы решили более внимательно присмотреться к ним и попробовать внести хоть какую-нибудь ясность по этому вопросу.

Прежде всего, хотим отметить, что в профессиональной технической литературе такие лампы называются Compact Fluorescent Lamps , в российской – компактные люминесцентные лампы , а уже во вторую очередь их называют Energy saving lamps .

Про возможный вред здоровью CFL, связанный с генерацией ими другого спектра света , мерцанием, «грязным электричеством», электромагнитным излучением, нерешенным вопросом утилизации и т.д., давно уже ведутся дебаты. Однако мы не будем конкретизировать доказательства по этим вопросам, т.к. не можем заниматься профессиональными исследованиями и не являемся специалистами в этой области, мы просто хотим собрать, изучить и сделать анализ на материалах представленных специалистами в сети Интернет.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)